Plot CR and/or CVE curves
Usage
plot_ce(
...,
which = "CR",
density_type = "none",
dat = NA,
dat_alt = NA,
zoom_x = "zoom in",
zoom_y = "zoom out",
labels = NA
)
Arguments
- ...
One or more objects of class
"vaccine_est"
returned byest_ce
.- which
One of c("CR", "CVE"); controls whether to plot CR curves or CVE curves.
- density_type
One of c("none", "kde", "kde edge"). Controls the type of estimator used for the background marker density plot. For "none", no density plot is displayed. For "kde", a weighted kernel density estimator is used. For "kde edge", a modified version of "kde" is used that allows for a possible point mass at the left edge of the marker distribution.
- dat
The data object originally passed into
est_ce
, used for plotting densities. It is only necessary to pass this in ifdensity_type
is not set to "none".- dat_alt
Alternative data object; a list containing one or more dataframes, each of the form
data.frame(s=..., weights=...)
. Columns
contains biomarker values and columnweights
contains corresponding two-phase sampling weights. This can be used as an alternative to specifyingdat
, and is particularly useful for plotting multiple densities on a single plot. If plotting multiple densities, the order of the dataframes should correspond to the order of"vaccine_est"
objects passed in. See examples.- zoom_x
Either one of c("zoom in", "zoom out") or a vector of length 2. Controls the zooming on the X-axis. The default "zoom in" will set the zoom limits to the plot estimates. Choosing "zoom out" will set the zoom limits to show the entire distribution of the marker. Entering a vector of length 2 will set the left and right zoom limits explicitly.
- zoom_y
Either "zoom out" or a vector of length 2. Controls the zooming on the Y-axis. The default "zoom out" will show the entire vertical range of the estimates. Entering a vector of length 2 will set the lower and upper zoom limits explicitly.
- labels
A character vector of length equal to the length of list(...), representing plot labels. Only used if length(list(...))>1.
Examples
# \donttest{
# Plot one curve
data(hvtn505)
dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt",
marker="IgG_V2", covariates=c("age","BMI","bhvrisk"),
weights="wt", ph2="casecontrol", data=hvtn505)
ests_cox <- est_ce(dat=dat, type="Cox", t_0=578)
plot_ce(ests_cox, density_type="kde", dat=dat)
# Trim display of plot according to quantiles of the biomarker distribution
ests_cox_tr <- trim(ests_cox, dat=dat, quantiles=c(0.05,0.95))
plot_ce(ests_cox_tr, density_type="kde", dat=dat)
# Plot multiple curves (same biomarker)
ests_np <- est_ce(dat=dat, type="NP", t_0=578)
plot_ce(ests_cox, ests_np, density_type="kde", dat=dat)
# Plot multiple curves (two different biomarkers)
dat2 <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt",
marker="IgG_env", covariates=c("age","BMI","bhvrisk"),
weights="wt", ph2="casecontrol", data=hvtn505)
ests_cox2 <- est_ce(dat=dat2, type="Cox", t_0=578)
dat_alt <- list(
data.frame(s=dat$s[dat$a==1], weights=dat$weights[dat$a==1]),
data.frame(s=dat2$s[dat2$a==1], weights=dat2$weights[dat2$a==1])
)
plot_ce(ests_cox, ests_cox2, density_type="kde", dat_alt=dat_alt)
# }