Estimate controlled risk (CR) curves and/or controlled vaccine efficacy (CVE) curves. See references for definitions of these curves.
Usage
est_ce(
dat,
type = "Cox",
t_0,
cr = TRUE,
cve = FALSE,
cr_placebo_arm = F,
s_out = seq(from = min(dat$s, na.rm = TRUE), to = max(dat$s, na.rm = TRUE), l = 101),
ci_type = "transformed",
placebo_risk_method = "KM",
return_p_value = FALSE,
return_extras = FALSE,
params_cox = params_ce_cox(),
params_np = params_ce_np()
)
Arguments
- dat
A data object returned by load_data
- type
One of c("Cox", "NP"). This specifies whether to estimate the curve(s) using a marginalized Cox proportional hazards model or using a monotone-constrained nonparametric estimator.
- t_0
Time point of interest
- cr
Boolean. If TRUE, the controlled risk (CR) curve is computed and returned.
- cve
Boolean. If TRUE, the controlled vaccine efficacy (CVE) curve is computed and returned.
- cr_placebo_arm
Boolean. If TRUE, the CR curve is estimated for the placebo arm instead of the vaccine arm.
- s_out
A numeric vector of s-values (on the biomarker scale) for which cve(s) and/or cr(s) are computed. Defaults to a grid of 101 points between the min and max biomarker values.
- ci_type
One of c("transformed", "truncated", "regular", "none"). If ci_type="transformed", confidence intervals are computed on the logit(CR) and/or log(1-CVE) scale to ensure that confidence limits lie within [0,1] for CR and/or lie within (-inf,1] for CVE. If ci_type="truncated", confidence limits are constructed on the CR and/or CVE scale but truncated to lie within [0,1] for CR and/or lie within (-inf,1] for CVE. If ci_type="regular", confidence limits are not transformed or truncated. If ci_type="none", confidence intervals are not computed.
- placebo_risk_method
One of c("KM", "Cox"). Method for estimating overall risk in the placebo group. "KM" computes a Kaplan-Meier estimate and "Cox" computes an estimate based on a marginalized Cox model survival curve. Only relevant if cve=TRUE.
- return_p_value
Boolean; if TRUE, a P-value corresponding to the null hypothesis that the CVE curve is flat is returned. The type of P-value corresponds to the
type
argument.- return_extras
Boolean; if TRUE, objects useful for debugging are returned.
- params_cox
A list of options returned by
params_ce_cox
that are relevant if type="Cox".- params_np
A list of options returned by
params_ce_np
that are relevant if type="NP".
Value
A list of the form list(cr=list(...), cve=list(...))
containing CR and/or CVE estimates. Each of the inner lists contains the
following:
s
: a vector of marker values corresponding to s_outest
: a vector of point estimatesci_lower
: a vector of confidence interval lower limitsci_upper
: a vector of confidence interval upper limits
References
Gilbert P, Fong Y, Kenny A, and Carone, M (2022). A Controlled Effects Approach to Assessing Immune Correlates of Protection. <doi:10.1093/biostatistics/kxac024>
Examples
data(hvtn505)
dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt",
marker="IgG_V2", covariates=c("age","BMI","bhvrisk"),
weights="wt", ph2="casecontrol", data=hvtn505)
# \donttest{
ests_cox <- est_ce(dat=dat, type="Cox", t_0=578)
ests_np <- est_ce(dat=dat, type="NP", t_0=578)
# }