Set parameters controlling Cox model estimation of controlled effect curves
Source:R/params.R
params_ce_cox.Rd
This should be used in conjunction with est_ce
to
set parameters controlling Cox model estimation of controlled effect
curves; see examples.
Arguments
- spline_df
An integer; if the marker is modeled flexibly within the Cox model linear predictor as a natural cubic spline, this option controls the degrees of freedom in the spline; knots are chosen to be equally spaced across the range of the marker.
- spline_knots
A numeric vector; as an alternative to specifying
spline_df
, the exact locations of the knots in the spline (including boundary knots) can be specified with this option.- edge_ind
Boolean. If TRUE, an indicator variable corresponding to the lower limit of the marker will be included in the Cox model linear predictor.
Examples
data(hvtn505)
dat <- load_data(time="HIVwk28preunblfu", event="HIVwk28preunbl", vacc="trt",
marker="IgG_V2", covariates=c("age","BMI","bhvrisk"),
weights="wt", ph2="casecontrol", data=hvtn505)
# \donttest{
ests_cox <- est_ce(
dat = dat,
type = "Cox",
t_0 = 578,
params_cox = params_ce_cox(spline_df=4)
)
# }